Dependence on diffusion time of apparent diffusion tensor of ex vivo calf tongue and heart.

نویسندگان

  • Sungheon Kim
  • Gloria Chi-Fishman
  • Alan S Barnett
  • Carlo Pierpaoli
چکیده

The time dependence of the apparent diffusion tensor of ex vivo calf heart and tongue was measured for diffusion times (tau(d)) between 32 and 810 ms. The results showed evidence of restricted diffusion in the muscle tissues of both organs. In regions where the myofibers are parallel, the largest eigenvalue (lambda(1)) of the diffusion tensor remained the same for all diffusion times measured, while the other eigenvalues (lambda(2), lambda(3)) decreased by 29-36% between tau(d) = 32 ms and tau(d) = 400 ms. In regions where the fibers cross, the lambda(1) also changed, decreasing by 17% between tau(d) = 32 ms and tau(d) = 400 ms. The restricting compartment size and volume fraction were effectively estimated by fitting the time courses of the eigenvalues to a model consisting of a nonrestricted compartment and a cylindrically restricted compartment. To our knowledge, this study is the first demonstrating diffusion time dependence of measured water diffusion tensor in muscular tissue. With improvement in scanning technology, future studies may permit noninvasive, in vivo detection of changes in muscle myoarchitecture due to disease, treatment, and exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical Depth Dependence of the Diffusion Anisotropy in the Human Cortical Gray Matter In Vivo

Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependen...

متن کامل

Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gai...

متن کامل

Serial diffusion tensor MRI and tractography of the mouse heart in-vivo: impact of ischemia on myocardial microstructure

Background Diffusion tensor MRI (DTI) has been used to investigate infarct healing and remodeling in several species. Tractography of the myocardium has also recently been reported. However, these prior studies were conducted ex-vivo on excised hearts. Here, we use in-vivo DTI of the mouse heart to follow microstructural changes in the myocardium in response to ischemia. Mean diffusivity (MD) a...

متن کامل

Second order motion compensated spin-echo diffusion tensor imaging of the human heart

PURPOSE Myocardial microstructure has been challenging to probe in vivo. Spin echo-based diffusion-weighted sequences allow for single-shot acquisitions but are highly sensitive to cardiac motion. In this study, the use of second-order motion-compensated diffusion encoding was compared with first-order motion-compensated diffusion-weighted imaging during systolic contraction of the heart. MET...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 54 6  شماره 

صفحات  -

تاریخ انتشار 2005